下载股融易安卓版
股融易手机网页版
最新
头条
业务微信号
公号二维码
专业
服务
点击了解 让创投更简单
您好,我们不兼容IE7以下的浏览器,建议您升级浏览器或更换浏览器
位置:首页 > 资讯 > 热门话题 > 大模型“图纸”已现,火山方舟开工
大模型“图纸”已现,火山方舟开工

[ 导读 ] 多云多模型的终局里,MaaS生态应该长什么样?

文丨刘雨琦

丨王一粟

中国房子盖了2000年,直至汉朝初期,才开始出现“建筑图纸”。

有了图纸后,盖房子便不仅仅依赖于几个“老师傅”,图纸是全盘的指导,避免了曾经多次的推倒重建以及因为力学结构不合理而半途而废的情况,更能将任务合理的分配给不同的木工、瓦工,进行团队协作。

图纸的出现,使建筑史进入了快速发展期,汉朝之后,中国建筑类型开始百花齐放,也通过不同房屋类型,出现了餐厅、书房、旅馆等功能性建筑。

大模型的路,也正在经历从摸着OpenAI过河,到按图索骥的阶段。

从今年2月份开始,大模型的公司进入了井喷的状态。中国科学技术信息研究所等机构发布的《中国人工智能大模型地图研究报告》显示,截至今年5月,国内已公开披露的大模型数量达到79个,“百模大战”名副其实。当众多巨头、明星创业者都纷纷下场“淘金”的时候,字节跳动旗下的火山引擎,选择了另一条“卖铲人”的路。6月28日,火山引擎发布大模型服务平台“火山方舟”,面向企业提供模型精调、评测、推理等全方位的平台服务。

不做通用大模型,做一个“卖铲人”,是火山引擎选择的路。

求本溯源,当下选择的路,往往在未来的目标之中。火山引擎总裁谭待在接受光锥智能等访谈时表示:“多云多模型时代将成为确定性的趋势。在未来,企业自身对于大模型的应用,将会是一个‘1 + N’的应用模式,即一个主力模型和N个模型协作的模式。”

多云多模型的时代,一定需要平台去建立生态,串联上下游。就像房子会越盖越多,需要不同公司满足多元化的住户需求,也需要建筑设计、钢筋水泥、软硬装修等一整套产业链。对应到大模型服务平台,就需要一边递图纸、锤子钉子、铲子等工具,帮大模型打造好;一边要对接模型方和需求方,通过链接完成商业闭环。

可以说,火山方舟作为一个大模型服务平台,是“模型商城+模型工具”的集合。

模型商城,让大模型用起来

MaaS(模型即服务)的概念如火如荼,但想要落地却非常不容易。

整个大模型的产业链条中,分为三个重点角色:一是模型的提供方,如OpenAI、谷歌、百度、阿里、MiniMax等打造通用大模型的厂商,他们打造的通用大模型,被称为基座模型;二是模型的使用方,不同企业将基座大模型通过精调和特殊数据的喂养为行业大模型;三是,大模型的终端客户/用户

相比海外市场在应用方面的火爆,中国市场仍然处在一个探索期。一方面,国内大模型百花齐放,但通用大模型仍然在不断训练和提升当中,追赶GPT-4的涌现能力;另一方面,想把大模型用起来的企业要么不知道如何决策,要么体验后效果并不尽如人意。

基于上述痛点,火山引擎将大模型服务平台的作用分为两个大方面,一个是模型商城,一个是模型工具。

模型商城,顾名思义,就是让市面上的大模型都尽量入驻,供模型需求方挑选。

据光锥智能了解到,目前,“火山方舟”集成了百川智能、出门问问、复旦大学MOSS、IDEA研究院、澜舟科技、MiniMax、智谱AI等7家AI科技公司及科研院所的大模型,统一对外提供服务。

这种吸纳多家初创大模型的做法,和此前业界初期普遍认为的“大模型是巨头的游戏”,“行业只需要极少数通用大模型,其余都是行业大模型”的想法并不完全一致。

火山引擎智能算法负责人吴迪认为,大模型市场会形成三级火箭:第一级是大模型提供商和研究机构,提供极具竞争性的通用基座模型或行业垂直模型。第二级是大量颇具技术能力的公司,形成1+N的模型格局,1个迭代自研模型的同时,引用若干商用模型。第三级则是千行百业都从大模型中获益,通过调用接口、精调模型,打造应用。在提升自身公司经营效率的同时, 把大模型能力输送到我们生活的方方面面。

如果未来的格局是多云多模型的情况,那一定需要一个“模型商城”来聚合提供商和使用方。

比如,在火山方舟“模型广场”中会有不同的模型供应商提供不同版本、参数、擅长不同领域的模型,使用方可以直接调用API 接入使用环境,也可以使用精调工具来做二次调优,再部署使用。

光锥智能曾在4月份调研多位SaaS厂商使用大模型的情况发现,大模型接入并不是“排他性”的,SaaS厂商更愿意同时接入多个大模型。这是因为接入成本并不高,多一个模型就多一个选择、多一个能力、多一重保障。比如,万兴科技就在海外业务中接入ChatGPT,国内业务接入文心一言。

而对于有大模型能力的厂商,不仅可以成为大模型的提供方,也能同时是需求方。比如,一家自研大语言模型的厂商,也可以接入其他大模型多模态的能力,让自己的产品更加多元化。

可以说,没有全能的大模型,但可以有全能的模型商城。

为了能帮企业选择与自己更适配的基座模型,火山方舟推出“模型评估”功能,支持用户基于自身数据、系统化地感知模型表现情况,并且给出详细的测评报告,为后续做决策提供数据基础。

对很多模型需求方来讲,并不是一味追求参数。参数大、性能强的,可能性价比不高。“一个经过良好精调的中小规格模型,在特定工作上的表现可能不亚于通用的、巨大的基座模型,而推理成本可以降低到原来的十分之一。”吴迪称。

而在模型评估之后,还需要进一步做模型精调,技术门槛和成本门槛是两个最大的拦路虎。

如果没有大模型服务平台,对于很多需求方而言,模型精调首先技术门槛比较高,既需要完整的数据能力,也需要有丰富的算法实践经验;其次对算力要求也不小,公有云的弹性廉价资源可以极大地降低成本。

为了解决上述问题,火山方舟提供“模型精调”能力,由平台提供极简精调流程,客户选择基础模型,上传标注数据集后即可精调;同时对于有复杂需求的场景,客户可以设置高级参数、验证集、测试集等更丰富功能,更自由的使用模型精调功能。

总之,火山方舟希望解决模型使用方的痛点,用更少的钱、更强的算力使用“更快的推理能力”。而对模型提供方来讲,只有把大模型用起来,才能进一步迭代成长。

大模型的底座:安全和工具

仅仅完成商业逻辑上的闭环,对大模型生态来说,还远远不够。除了大模型的核心能力,还需要更深厚的内功。

“企业使用大模型,首先要解决安全与信任问题”,谭待表示。

据网络安全

参与评论
0条评论
  • 作者时间
    内容
×
转发到圈子
光锥智能
光锥智能
文章:239篇   浏览:17294
「光锥智能」重点关注人工智能、云计算、芯片、机器人、智能化软件、碳中和、空天科技等领域,着重深度研报+一线采访,以各硬科技、碳中和等行业从业者为主要受众,力求做从业者最具价值的行业内参。来这里,看千行百业的数字化、智能化。
我要开通专栏 发布专栏文章
请先完成下方验证 ×
请输入手机号或邮箱号
您输入的密码不正确